Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Science ; 379(6634): 795-802, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821679

RESUMO

Interfacing electronics with neural tissue is crucial for understanding complex biological functions, but conventional bioelectronics consist of rigid electrodes fundamentally incompatible with living systems. The difference between static solid-state electronics and dynamic biological matter makes seamless integration of the two challenging. To address this incompatibility, we developed a method to dynamically create soft substrate-free conducting materials within the biological environment. We demonstrate in vivo electrode formation in zebrafish and leech models, using endogenous metabolites to trigger enzymatic polymerization of organic precursors within an injectable gel, thereby forming conducting polymer gels with long-range conductivity. This approach can be used to target specific biological substructures and is suitable for nerve stimulation, paving the way for fully integrated, in vivo-fabricated electronics within the nervous system.


Assuntos
Biopolímeros , Encéfalo , Condutividade Elétrica , Enzimas , Sistema Nervoso Periférico , Animais , Biopolímeros/biossíntese , Encéfalo/enzimologia , Eletrodos , Eletrônica , Enzimas/metabolismo , Sanguessugas , Modelos Animais , Sistema Nervoso Periférico/enzimologia , Polimerização , Peixe-Zebra
2.
Science ; 379(6634): 758-759, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821689

RESUMO

An electrically conducting soft polymer is synthesized within living tissue.


Assuntos
Biopolímeros , Encéfalo , Eletrônica , Sistema Nervoso Periférico , Animais , Biopolímeros/biossíntese , Condutividade Elétrica , Géis , Encéfalo/enzimologia , Sistema Nervoso Periférico/enzimologia
3.
Glycobiology ; 32(10): 826-848, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35871440

RESUMO

The substitution and de-substitution of carbohydrate materials are important steps in the biosynthesis and/or breakdown of a wide variety of biologically important polymers. The SGNH hydrolase superfamily is a group of related and well-studied proteins with a highly conserved catalytic fold and mechanism composed of 16 member families. SGNH hydrolases can be found in vertebrates, plants, fungi, bacteria, and archaea, and play a variety of important biological roles related to biomass conversion, pathogenesis, and cell signaling. The SGNH hydrolase superfamily is chiefly composed of a diverse range of carbohydrate-modifying enzymes, including but not limited to the carbohydrate esterase families 2, 3, 6, 12 and 17 under the carbohydrate-active enzyme classification system and database (CAZy.org). In this review, we summarize the structural and functional features that delineate these subfamilies of SGNH hydrolases, and which generate the wide variety of substrate preferences and enzymatic activities observed of these proteins to date.


Assuntos
Carboidratos , Hidrolases , Biopolímeros/biossíntese , Biopolímeros/química , Carboidratos/biossíntese , Carboidratos/química , Esterases/química , Esterases/classificação , Esterases/metabolismo , Hidrolases/química , Hidrolases/classificação , Hidrolases/metabolismo , Conformação Proteica
4.
Int J Biol Macromol ; 192: 978-998, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656544

RESUMO

Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One­carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.


Assuntos
Biopolímeros/biossíntese , Microbiologia Industrial/métodos , Plásticos/química , Poli-Hidroxialcanoatos/biossíntese , Bioengenharia/métodos , Biopolímeros/química , Reatores Biológicos , Carbono/química , Carbono/metabolismo , Fermentação , Redes e Vias Metabólicas , Poli-Hidroxialcanoatos/química
5.
Commun Biol ; 4(1): 1007, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433872

RESUMO

The haloarchaeon Haloferax mediterranei is a potential strain for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) production, yet the production yield and cost are the major obstacles hindering the use of this archaeal strain. Leveraging the endogenous type I-B CRISPR-Cas system in H. mediterranei, we develop a CRISPR-based interference (CRISPRi) approach that allows to regulate the metabolic pathways related to PHBV synthesis, thereby enhancing PHBV production. Our CRISPRi approach can downregulate the gene expression in a range of 25% to 98% depending upon the target region. Importantly, plasmid-mediated CRISPRi downregulation on the citrate synthase genes (citZ and gltA) improves the PHBV accumulation by 76.4% (from 1.78 to 3.14 g/L). When crRNA cassette integrated into chromosome, this further shortens the PHBV fermentation period and enhances PHA productivity by 165%. Our transcriptome analysis shows that repression of citrate synthase genes redirects metabolic flux from the central metabolic pathways to PHBV synthesis pathway. These findings demonstrate that the CRISPRi-based gene regulation is a transformative toolkit for fine-tuning the endogenous metabolic pathways in the archaeal system, which can be applied to not only the biopolymer production but also many other applications.


Assuntos
Ciclo do Carbono , Haloferax mediterranei/metabolismo , Poliésteres/metabolismo , Biopolímeros/biossíntese , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
6.
Ecotoxicol Environ Saf ; 220: 112399, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34091187

RESUMO

The Rotimer, a rotifer-specific biopolymer, is an exogenic bioactive exudate secreted by different monogonant species (e.g. Euchlanis dilatata or Lecane bulla). The production of this viscoelastic biomolecule is induced by different micro-particles, thereby forming a special Rotimer-Inductor Conglomerate (RIC) in a web format. In this case, the water insoluble Carmine crystals, filtered to size (max. diameter was 50 µm), functioned as an inductor. The RIC production is an adequate empirical indicator to follow up this filamentous biopolymer secretion experientially; moreover, this procedure is very sensitive to the environmental factors (temperature, pH, metals and possible natural pollutant agents). The above mentioned species show completely different reactions to these factors, except to the presence of calcium and to the modulating effects of different drugs. One of the novelties of this work is that the Rotimer secretion and consequently, the RIC-formation is a mutually obligatory and evolutionary calcium-dependent process in the concerned monogonants. This in vivo procedure needs calcium, both for the physiology of animals and for fiber formation, particularly in the latter case. The conglomerate covered area (%) and the detection of the longest filament (mm) of the given RIC were the generally and simultaneously applied methods in the current modulating experiments. Exploring the regulatory (e.g. calcium-dependency) and stimulating (e.g. Lucidril effect) possibilities of biopolymer secretion are the basis for optimizing the RIC-production capacities of these micro-metazoans.


Assuntos
Biopolímeros/biossíntese , Cálcio/farmacologia , Meio Ambiente , Poluentes Ambientais/farmacologia , Exsudatos e Transudatos , Rotíferos/metabolismo , Animais , Concentração de Íons de Hidrogênio , Rotíferos/efeitos dos fármacos , Temperatura
7.
Mar Drugs ; 19(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803653

RESUMO

Plastic pollution is a worldwide concern causing the death of animals (mainly aquatic fauna) and environmental deterioration. Plastic recycling is, in most cases, difficult or even impossible. For this reason, new research lines are emerging to identify highly biodegradable bioplastics or plastic formulations that are more environmentally friendly than current ones. In this context, microbes, capable of synthesizing bioplastics, were revealed to be good models to design strategies in which microorganisms can be used as cell factories. Recently, special interest has been paid to haloarchaea due to the capability of some species to produce significant concentrations of polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), and polyhydroxyvalerate (PHV) when growing under a specific nutritional status. The growth of those microorganisms at the pilot or industrial scale offers several advantages compared to that of other microbes that are bioplastic producers. This review summarizes the state of the art of bioplastic production and the most recent findings regarding the production of bioplastics by halophilic microorganisms with special emphasis on haloarchaea. Some protocols to produce/analyze bioplastics are highlighted here to shed light on the potential use of haloarchaea at the industrial scale to produce valuable products, thus minimizing environmental pollution by plastics made from petroleum.


Assuntos
Archaea/metabolismo , Plásticos Biodegradáveis/metabolismo , Biopolímeros/biossíntese , Biotecnologia , Química Verde
8.
Molecules ; 26(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922162

RESUMO

The present study was aimed to evaluate the suitability of agro-wastes and crude vegetable oils for the cost-effective production of poly-ß-hydroxybutyrate (PHB), to evaluate growth kinetics and PHB production in Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 with these carbon substrates and to study the biodegradation of PHB accumulated by these cultures. Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 accumulates higher amounts of PHB corn (79.90% of dry cell mass) and rice straw (66.22% of dry cell mass) medium respectively. The kinetic model suggests that the Pseudomonas sp. RZS1 follows the Monod model more closely than A. faecalis RZS4. Both the cultures degrade their PHB extract under the influence of PHB depolymerase. Corn waste and rice straw appear as the best and cost-effective substrates for the sustainable production of PHB from Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1. The biopolymer accumulated by these organisms is biodegradable in nature. The agro-wastes and crude vegetable oils are good and low-cost sources of nutrients for the growth and production of PHB and other metabolites. Their use would lower the production cost of PHB and the low-cost production will reduce the sailing price of PHB-based products. This would promote the large-scale commercialization and popularization of PHB as an ecofriendly bioplastic/biopolymer.


Assuntos
Agricultura , Alcaligenes/metabolismo , Biopolímeros/biossíntese , Fermentação , Pseudomonas/metabolismo , Resíduos , Biodegradação Ambiental , Biomassa , Biopolímeros/química , Biopolímeros/isolamento & purificação , Cinética , Plásticos/química , Análise Espectral
9.
Braz J Microbiol ; 52(2): 715-726, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33590449

RESUMO

Nowadays when conventional plastic is being looked as a menace, the possibility of it being replaced with polyhydroxyalkanoates (PHAs) which are biodegradable, environment friendly and biocompatible thermoplastics is not remote. PHAs are a fascinating group of biopolyesters stored within the cytoplasm of numerous bacterial cells as energy and carbon reserves. PHAs signify the best promising biological substitute to certain conventional petrochemical plastics which have wide range of applications in different industries such as biomedical sector, packaging, toners for printing, and adhesives for coating, etc. In the present study, PHAs producing bacterial strains were screened by Sudan black B staining and confirmed by Nile blue A staining. Out of forty bacterial strains showing positive results, six bacterial strains exhibited comparatively higher PHAs production. The highest PHAs producing bacterial strain was identified using 16s rRNA sequencing. Optimization of process parameters was performed by using one factor at a time (OFAT) approach. The isolated bacterium was able to synthesize PHAs when various agro-industrial wastes such as domestic kitchen waste, mixed fruit pulp, sugarcane molasses, and waste flour from bread factory were screened as a carbon substrate in the growth medium. The results showed accumulation of 44.5% PHAs of cell dry weight using domestic kitchen waste as carbon substrate. The characterization of biopolymers was performed using FTIR and XRD analysis. The commercial exploitation of results of this study may serve twin purposes of addressing the challenge of high production cost of PHAs being the major constraint in replacing petro-based plastics as well as address the problem of disposal of recurring domestic kitchen waste and other agro-industrial waste.


Assuntos
Bactérias/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biopolímeros/biossíntese , Resíduos Industriais/análise
10.
Gene ; 778: 145472, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33549715

RESUMO

Plant type III polyketide synthases (PKSs) are associated with various functions in plant growth, development and defense by providing a multitude of polyketide scaffolds for diverse specialized metabolic pathways (SMPs). To decipher banana PKSs involved in specialized metabolism, genome-wide comparative analyses were conducted with A (Musa acuminata) and B (Musa balbisiana) genomes of banana. Both genomes retained eight chalcone synthases (CHSs), seven curcumin synthases (CURSs), three diketidyl-CoA synthases (DCSs) and one anther specific CHS (ASC). Segmental (42%) and tandem (37%) duplication events majorly flourished the banana PKS family. Six of 19 PKSs of A genome (designated as MaPKSs) showed relatively a higher expression in the root, corm, sheath, leaf and embryogenic cell suspension (ECS) of banana. To determine the defense response of MaPKSs and to highlight their candidacy in various SMPs, expression profiling was conducted by qPCR in ECSs treated with 100/200 µM of jasmonic acid (JA) and salicylic acid (SA) at 24/48 h. Maximum and subordinate expression induction of MaPKSs was apparent respectively against JA and SA treatments. Notably, most MaPKSs achieved their peak expression within 24 h of JA and the total flavonoid content was reached maximum within 24 h of JA/SA elicitations. Considering the homology, phylogeny, and expression levels in each analyzed sample (n = 13), three CHSs, three DCSs along with three CURSs and one ASC were selected as most promising candidates respectively for flavonoids, phenylphenalenones and sporopollenin biosynthesis in banana. Our findings provide a first-line resource to disclose the functions of banana PKSs involved in distinct SMPs.


Assuntos
Perfilação da Expressão Gênica/métodos , Musa/classificação , Policetídeo Sintases/genética , Sequenciamento Completo do Genoma/métodos , Biopolímeros/biossíntese , Carotenoides , Ciclopentanos/farmacologia , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Redes e Vias Metabólicas/efeitos dos fármacos , Musa/genética , Oxilipinas/farmacologia , Fenalenos/metabolismo , Filogenia , Proteínas de Plantas/genética , Ácido Salicílico/farmacologia
11.
Nat Protoc ; 16(2): 561-578, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33473197

RESUMO

Solid-phase synthesis represents the methodological showcase for technological advances such as split-and-pool combinatorial chemistry and the automated synthesis of peptides, nucleic acids and polysaccharides. These strategies involve iterative coupling cycles that do not generate functional diversity besides that incorporated by the amino acids, nucleosides and monosaccharide building blocks. In sharp contrast, multicomponent reactions (MCRs) are traditionally used to generate both skeletal and appendage diversity in short, batchwise procedures. On-resin MCRs have traditionally been employed for the construction of heterocycle and peptidomimetic libraries, but that scenario has changed recently, and today the focus is more on the solid-phase derivatization of peptides and oligonucleotides. This review presents relevant experimental details and addresses the synthetic scope of such on-resin multicomponent protocols employed to accomplish specific biopolymer covalent modifications that are practically inviable by traditional solution-phase methodologies. Recommendations are provided to facilitate the implementation of solid-supported protocols and avoid possible pitfalls associated with the selection of the polymeric resin, the solvent and the order and amount of the reagents employed. We describe procedures comprising the multicomponent lipidation, biotinylation and labeling of both termini and the side chains, as well as the use of MCRs in the traceless on-resin synthesis of ligated and cyclic peptides. Solid-phase protocols for the assembly of α-helical and parallel ß-sheet peptides as well as hybrid peptide-peptoid and peptide-peptide nucleic acid architectures are described. Finally, the solid-supported multicomponent derivatization of DNA oligonucleotides is illustrated as part of the DNA-encoded library technology relying on MCR-derived heterocyclic compounds.


Assuntos
Biopolímeros/química , Técnicas de Química Combinatória/métodos , Técnicas de Síntese em Fase Sólida/métodos , Aminas , Aminoácidos , Biopolímeros/biossíntese , Biotinilação , DNA , Compostos Heterocíclicos , Oligonucleotídeos , Peptídeos/síntese química , Peptídeos Cíclicos , Resinas Sintéticas/química
12.
Plant Mol Biol ; 105(6): 625-635, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33481140

RESUMO

KEY MESSAGE: IEF, a novel plasma plasma membrane protein, is important for exine formation in Arabidopsis. Exine, an important part of pollen wall, is crucial for male fertility. The major component of exine is sporopollenin which are synthesized and secreted by tapetum. Although sporopollenin synthesis has been well studied, the transportation of it remains elusive. To understand it, we analyzed the gene expression pattern in tapetal microdissection data, and investigated the potential transporter genes that are putatively regulated by ABORTED MICROSPORES (AMS). Among these genes, we identified IMPERFECTIVE EXINE FORMATION (IEF) that is important for exine formation. Compared to the wild type, ief mutants exhibit severe male sterility and pollen abortion, suggesting IEF is crucial for pollen development and male fertility. Using both scanning and transmission electron microscopes, we showed that exine structure was not well defined in ief mutant. The transient expression of IEF-GFP driven by the 35S promoter indicated that IEF-GFP was localized in plasma membrane. Furthermore, AMS can specifically activate the expression of promoterIEF:LUC in vitro, which suggesting AMS regulates IEF for exine formation. The expression of ATP-BINDING CASSETTE TRANSPORTER G26 (AGCB26) was not affected in ief mutants. In addition, SEM and TEM data showed that the sporopollenin deposition is more defective in abcg26/ief-2 than that of in abcg26, which suggesting that IEF is involved in an independent sporopollenin transportation pathway. This work reveal a novel gene, IEF regulated by AMS that is essential for exine formation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fertilidade/fisiologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Biopolímeros/biossíntese , Carotenoides/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Pólen
13.
Carbohydr Res ; 499: 108223, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33342516

RESUMO

Fructan based biopolymers have been extensively characterized and explored for their potential applications. Linear chained biopolymers, like levan-type fructan, have gained attention because they have exhibited unconventional stretchable and unbendable properties along with biodegradable and biocompatible nature. Current study deals with the chemical characterization and cytotoxic analysis of fructose based exopolysaccharide that was extracellularly produced by an indigenously isolated bacterial species (Zymomonas mobilis KIBGE-IB14). Maximum yield of exopolysaccharide (44.7 gL-1) was attained after 72 h of incubation at 30 °C under shaking conditions (180 rpm) when the culture medium was supplemented with 150.0 gL-1 of sucrose as a sole carbon source. This exopolysaccharide displayed high water solubility index (96.0%) with low water holding capacity (17.0%) and an intrinsic viscosity of about 0.447 dL g-1. This biopolymer exhibited a characteristic linear homopolysaccharide structure of levan when characterized using Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (NMR) spectroscopy (1H, 13C, TOCSY and NOESY) while, Atomic Force Microscopy (AFM) revealed its pointed and thorny structure. The decomposition temperature of levan was approximately 245 °C as revealed by Thermal Gravimetric Analysis (TGA). X-Ray Diffraction (XRD) results revealed its amorphous nature with crystalline phase. Cytotoxicity of different concentrations of levan was investigated against mouse fibroblast cell lines by measuring their cellular metabolic activity and it was noticed that a higher concentration of levan (2.0 mg ml-1) permitted the normal cell growth of NIH/3T3 cell lines. This non-cytotoxic and biocompatible nature suggests that this levan has the capability to be utilized in food and drug-based formulations as it exhibited biomedical potential.


Assuntos
Biopolímeros/farmacologia , Frutanos/farmacologia , Zymomonas/química , Animais , Biopolímeros/biossíntese , Biopolímeros/química , Configuração de Carboidratos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Frutanos/biossíntese , Frutanos/química , Camundongos , Células NIH 3T3 , Zymomonas/metabolismo
14.
Electron. j. biotechnol ; 48: 36-45, nov. 2020. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1254948

RESUMO

Azotobacter vinelandii is a gram-negative soil bacterium that produces two biopolymers of biotechnological interest, alginate and poly(3-hydroxybutyrate), and it has been widely studied because of its capability to fix nitrogen even in the presence of oxygen. This bacterium is characterized by its high respiration rates, which are almost 10-fold higher than those of Escherichia coli and are a disadvantage for fermentation processes. On the other hand, several works have demonstrated that adequate control of the oxygen supply in A. vinelandii cultivations determines the yields and physicochemical characteristics of alginate and poly(3-hydroxybutyrate). Here, we summarize a review of the characteristics of A. vinelandii related to its respiration systems, as well as some of the most important findings on the oxygen consumption rates as a function of the cultivation parameters and biopolymer production.


Assuntos
Respiração , Biopolímeros/biossíntese , Azotobacter vinelandii/fisiologia , Poliésteres , Alginatos , Bactérias Gram-Negativas/fisiologia , Hidroxibutiratos , Fixação de Nitrogênio
15.
World J Microbiol Biotechnol ; 36(11): 170, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043393

RESUMO

Melanins are natural biopolymers that are known to contribute to different biological processes and to protect organisms from adverse environmental conditions. During the past decade, melanins have attracted increasing attention for their use in organic semiconductors and bioelectronics, drug delivery, photoprotection and environmental bioremediation. Although considerable advances in these fields have been achieved, real-world applications of melanins are still scarce, probably due to the limited and expensive source of natural melanin. Nevertheless, recent biotechnological advances have allowed for relatively large-scale production of microbial melanins, which could replace current commercial melanin. In this review, we first describe different melanin sources and highlight the advantages and disadvantages of each production method. Our focus is on the microbial synthesis of melanins, including the methodology and mechanism of melanin formation. Applications of microbial melanins are also discussed, and an outlook on how to push the field forward is discussed.


Assuntos
Biotecnologia , Melaninas/biossíntese , Melaninas/química , Bactérias/metabolismo , Biopolímeros/biossíntese , Biopolímeros/química , Fenômenos Químicos , Sistemas de Liberação de Medicamentos , Fungos/metabolismo , Humanos , Estrutura Molecular
16.
Int J Mol Sci ; 21(19)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003478

RESUMO

Cyanobacteria are photoautotrophic bacteria commonly found in the natural environment. Due to the ecological benefits associated with the assimilation of carbon dioxide from the atmosphere and utilization of light energy, they are attractive hosts in a growing number of biotechnological processes. Biopolymer production is arguably one of the most critical areas where the transition from fossil-derived chemistry to renewable chemistry is needed. Cyanobacteria can produce several polymeric compounds with high applicability such as glycogen, polyhydroxyalkanoates, or extracellular polymeric substances. These important biopolymers are synthesized using precursors derived from central carbon metabolism, including the tricarboxylic acid cycle. Due to their unique metabolic properties, i.e., light harvesting and carbon fixation, the molecular and genetic aspects of polymer biosynthesis and their relationship with central carbon metabolism are somehow different from those found in heterotrophic microorganisms. A greater understanding of the processes involved in cyanobacterial metabolism is still required to produce these molecules more efficiently. This review presents the current state of the art in the engineering of cyanobacterial metabolism for the efficient production of these biopolymers.


Assuntos
Biopolímeros/biossíntese , Biotecnologia , Cianobactérias/metabolismo , Fotossíntese/genética , Biopolímeros/genética , Biopolímeros/metabolismo , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Glicogênio/metabolismo , Poli-Hidroxialcanoatos/genética , Poli-Hidroxialcanoatos/metabolismo
17.
Sci Rep ; 10(1): 8815, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483188

RESUMO

Biobased degradable plastics have received significant attention owing to their potential application as a green alternative to synthetic plastics. A dye-based procedure was used to screen poly-3-hydroxybutyrate (PHB)-producing marine bacteria isolated from the Red Sea, Saudi Arabia. Among the 56 bacterial isolates, Pseudodonghicola xiamenensis, identified using 16S rRNA gene analyses, accumulated the highest amount of PHB. The highest PHB production by P. xiamenensis was achieved after 96 h of incubation at pH 7.5 and 35 °C in the presence of 4% NaCl, and peptone was the preferred nitrogen source. The use of date syrup at 4% (w/v) resulted in a PHB concentration of 15.54 g/L and a PHB yield of 38.85% of the date syrup, with a productivity rate of 0.162 g/L/h, which could substantially improve the production cost. Structural assessment of the bioplastic by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy revealed the presence of methyl, hydroxyl, methine, methylene, and ester carbonyl groups in the extracted polymer. The derivative products of butanoic acid estimated by gas chromatography-mass spectrometry [butanoic acid, 2-amino-4-(methylseleno), hexanoic acid, 4-methyl-, methyl ester, and hexanedioic acid, monomethyl ester] confirmed the structure of PHB. The present results are the first report on the production of a bioplastic by P. xiamenensis, suggesting that Red Sea habitats are a potential biological reservoir for novel bioplastic-producing bacteria.


Assuntos
Plásticos Biodegradáveis/metabolismo , Biopolímeros/biossíntese , Hidroxibutiratos/metabolismo , Microbiologia Industrial/métodos , Resíduos Industriais , Phoeniceae , Poliésteres/metabolismo , Rhodobacteraceae/metabolismo , Técnicas Bacteriológicas , Plásticos Biodegradáveis/química , Biopolímeros/química , Meios de Cultura , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/microbiologia , Hidroxibutiratos/química , Oceano Índico , Ressonância Magnética Nuclear Biomolecular , Filogenia , Preparações de Plantas , Poliésteres/química , Rhodobacteraceae/classificação , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Ribotipagem , Água do Mar/microbiologia , Cloreto de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Microbiologia da Água
18.
Microb Cell Fact ; 19(1): 59, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138785

RESUMO

BACKGROUND: Heterogeneity of oil-bearing formations is one of major contributors to low oil recovery efficiency globally. Long-term water flooding will aggravate this heterogeneity by resulting in many large channels during the exploitation process. Thus, injected water quickly flows through these large channels rather than oil-bearing areas, which ultimately leads to low oil recovery. This problem can be solved by profile control using polymer plugging. However, non-deep profile control caused by premature plugging is the main challenge. Here, a conditional bacterial cellulose-producing strain, namely Enterobacter sp. FY-0701, was constructed for deep profile control to solve the problem of premature plugging. Its deep profile control and oil displacement capabilities were subsequently identified and assessed. RESULTS: The conditional bacterial cellulose-producing strain Enterobacter sp. FY-0701 was constructed by knocking out a copy of fructose-1, 6-bisphosphatase (FBP) encoding gene in Enterobacter sp. FY-07. Scanning electron microscope observation showed this strain produced bacterial cellulose using glucose rather than glycerol as the sole carbon source. Bacterial concentration and cellulose production at different locations in core experiments indicated that the plugging position of FY-0701 was deeper than that of FY-07. Moreover, enhanced oil recovery by FY-0701 was 12.09%, being 3.86% higher than that by FY-07 in the subsequent water flooding process. CONCLUSIONS: To our knowledge, this is the first report of conditional biopolymer-producing strains used in microbial enhance oil recovery (MEOR). Our results demonstrated that the conditional bacterial cellulose-producing strain can in situ produce biopolymer far from injection wells and plugs large channels, which increased the sweep volume of injection water and enhance oil recovery. The construction of this strain provides an alternative strategy for using biopolymers in MEOR.


Assuntos
Celulose/biossíntese , Enterobacter/genética , Enterobacter/metabolismo , Petróleo , Biopolímeros/biossíntese , Técnicas de Inativação de Genes , Glucose/metabolismo , Microbiologia Industrial , Tensoativos , Água
19.
Molecules ; 25(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906348

RESUMO

The synthesis of bioplastic from marine microbes has a great attendance in the realm of biotechnological applications for sustainable eco-management. This study aims to isolate novel strains of poly-ß-hydroxybutyrate (PHB)-producing bacteria from the mangrove rhizosphere, Red Sea, Saudi Arabia, and to characterize the extracted polymer. The efficient marine bacterial isolates were identified by the phylogenetic analysis of the 16S rRNA genes as Tamlana crocina, Bacillus aquimaris, Erythrobacter aquimaris, and Halomonas halophila. The optimization of PHB accumulation by E. aquimaris was achieved at 120 h, pH 8.0, 35 °C, and 2% NaCl, using glucose and peptone as the best carbon and nitrogen sources at a C:N ratio of 9.2:1. The characterization of the extracted biopolymer by Fourier-transform infrared spectroscopy (FTIR), Nuclear magnetic resonance (NMR), and Gas chromatography-mass spectrometry (GC-MS) proves the presence of hydroxyl, methyl, methylene, methine, and ester carbonyl groups, as well as derivative products of butanoic acid, that confirmed the structure of the polymer as PHB. This is the first report on E. aquimaris as a PHB producer, which promoted the hypothesis that marine rhizospheric bacteria were a new area of research for the production of biopolymers of commercial value.


Assuntos
Biopolímeros/biossíntese , Biopolímeros/química , Hidroxibutiratos/química , Hidroxibutiratos/metabolismo , Poliésteres/química , Poliésteres/metabolismo , Sphingomonadaceae/química , Sphingomonadaceae/metabolismo , Avicennia/microbiologia , Bacillus/química , Bacillus/genética , Bacillus/metabolismo , Biopolímeros/análise , Carbono/química , Carbono/metabolismo , Fermentação , Flavobacteriaceae/química , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Halomonas/química , Halomonas/genética , Halomonas/metabolismo , Hidroxibutiratos/análise , Espectroscopia de Ressonância Magnética , Nitrogênio/química , Nitrogênio/metabolismo , Filogenia , Poliésteres/análise , RNA Ribossômico 16S/genética , Rizosfera , Salinidade , Arábia Saudita , Água do Mar/microbiologia , Espectroscopia de Infravermelho com Transformada de Fourier , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Temperatura
20.
Lett Appl Microbiol ; 70(4): 300-309, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31891417

RESUMO

Two bacterial strains able to produce polyhydroxyalkanoates (PHAs) from a wide variety of pure carbon sources (dextrose, xylose, sucrose, lactose and glycerol) were isolated from forest soils and identified as Achromobacter mucicolens and Stenotrophomonas rhizophila. Achromobacter mucicolens also produced poly(3-hydroxybutyrate) (PHB) from different wastes (cheese whey, molasses, agave bagasse hydrolysate, nejayote and mango waste pulp). Stenotrophomonas rhizophila, produced the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV) from glycerol (7·7 mol% of HV), and from sucrose with addition of propionic or valeric acid (4·5 and 25 mol% of HV, respectively). The copolymers presented a lower melting point (145, 156 and 127°C) and crystallinity (23, 26 and 16%) than PHB. The maximum biopolymer accumulation (PHB) for each strain growing in pure carbon source was as follows: 31·3 g per 100 g dry cell weight (DCW) for A. mucicolens from xylose; and 13·7 g per 100 g DCW for S. rhizophila from sucrose. Regarding the waste carbon sources, the highest PHB accumulation was obtained from agave bagasse hydrolysate (20·4 g per 100 g DCW) by A. mucicolens. The molecular weights of the biopolymers obtained ranged from 200 to 741 kDa. SIGNIFICANCE AND IMPACT OF THE STUDY: The economic cost of the carbon source for the culture of polyhydroxyalkanoates (PHAs)-producing microorganisms is one of the main process limitations. Therefore, it is vital to find versatile microorganisms able to grow and to accumulate homo and copolymers of PHAs from low-cost substrates. In this research, we report two bacterial strains that produce poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or both from at least five pure and five waste carbon sources. These results, by such bacterial strains have not been reported, especially the production of copolymer from glycerol without addition of precursors by Stenotrophomonas rhizophila and the production of PHB from xylose and agave bagasse hydrolysate by Achromobacter mucicolens.


Assuntos
Biopolímeros/biossíntese , Poli-Hidroxialcanoatos/biossíntese , Microbiologia do Solo , Stenotrophomonas/metabolismo , Biopolímeros/química , Carbono/metabolismo , Florestas , Glicerol/metabolismo , Resíduos Industriais/análise , Peso Molecular , Poli-Hidroxialcanoatos/química , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Resíduos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...